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A method for producing quantitative estimates of systematic uncertainties generated in the analysis
of impedance-match shock-wave data is described. Central to the method is an analytic
representation of the principal Hugoniot of the standard which incorporates a description of
data-dependent uncertainties of the principal Hugoniot and model-dependent uncertainties of the
off-Hugoniot states. Expressions for the sound speed and Grüneisen coefficient along the principal
Hugoniot are also derived with uncertainties. An accurate impedance-match shock-wave equation of
state for Al to shock pressure of 3 TPa is given and is used to estimate the systematic uncertainties
of several previously published experimental results. © 2005 American Institute of Physics.
#DOI: 10.1063/1.2140077$

I. INTRODUCTION

Shock-wave impedance-match measurements are a com-
mon method of producing shock-wave equation-of-state
!EOS" data for a variety of different sample materials. These
measurements are performed by transmitting a shock wave
from a known material !the reference standard" into an un-
known sample.1–4 From measurements of two observables,
usually the shock velocities in the standard and in the
sample, and using the Rankine-Hugoniot conservation rela-
tions, one can deduce the pressure, density, and internal en-
ergy in the shocked sample. Such measurements depend on
the accurate knowledge of the equation of state of the stan-
dard and are therefore considered as relative measurements.
The shock-wave EOS of the standard must be calibrated,
usually through a series of separate absolute measurements.
The data from absolute measurements are independent of the
theoretical or model-dependent input, and the uncertainties
in the EOS of the standard can be traced to measurement
uncertainties. In the case of relative measurements, the un-
certainties in the EOS of the standard propagate as system-
atic errors because the data must be reduced using imperfect
knowledge of the EOS of the standard.

The impedance-match method is important because it is
the simplest, and sometimes the only, means available to
obtain shock-wave data on some types of samples, for ex-
ample, fluid samples5–8 or in the ultrahigh ranges of shock
pressure.9–11 In recent years impedance-match techniques
have been applied to obtain shock-wave EOS data at ever
higher pressures in laboratory experiments using, for ex-
ample, laser-driven shock waves,8,12–14 magnetically driven
flyer plates,15 or convergent explosive systems.16–18 In the
latter cases, the experiments have reached a pressure domain
where experimental knowledge of the EOS of the standard is
sparse. A further complication with impedance-match analy-
sis is that, except at the lowest pressures, one cannot avoid
introducing theoretical !i.e., model dependent" input in the

calculations. In particular, most of the recent studies that we
are aware of employ theoretical EOS models to perform the
impedance-match analysis.8–18 Because of the difficulties of
separating out and assessing the systematic bias contained in
a given theoretical EOS model, these studies estimated the
random !measurement" errors but not the systematic uncer-
tainties. Since the accuracy of the impedance-match method
is related to the accuracy of our knowledge of the standard
and of the systematic details of the impedance-match analy-
sis itself, it is important to produce quantitative estimates of
the systematic uncertainties in the analyzed results.

In this article we describe a method for impedance-
match analysis that addresses the issues described above. It
quantifies the uncertainties of both the random measurement
and systematic error contributions. In developing this
method we have focused on the aluminum shock-wave stan-
dard because it is one of the most common standards avail-
able and is used frequently in our own experiments. We ap-
ply the analysis to the data available from several recent
experiments. Knowledge of the systematic uncertainties to-
gether with the random measurement uncertainties allows a
comprehensive assessment of the overall accuracy of the re-
sulting data.

II. IMPEDANCE-MATCH ANALYSIS

A. Outline of impedance-match calculations

In impedance-match equation-of-state experiments the
reference and sample impedances generally do not match,
and the incident shock wave resolves into a transmitted
shock and a reflected wave directed back into the standard
material. When the sample impedance is lower than that of
the standard, the reflected wave is a rarefaction, and the stan-
dard undergoes an isentropic release; when the sample im-
pedance is higher the reflected wave is a shock, and the
standard undergoes further shock compression.a"Electronic mail: celliers1@llnl.gov
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The shock incident in the standard and that transmitted
into the sample both obey the Rankine-Hugoniot relations,
which express the conservation of mass, momentum, and
energy across the shock front,

!i

!i0
=
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, !1"

Pi − Pi0 = !i0uiUi, !2"

Ei − Ei0 =
1
2

!Pi + Pi0"% 1
!i0

−
1
!i
& . !3"

In the following we use the subscript i=1 to denote the in-
cident !first" shock state in the standard and i=2 to denote
the state of the shock transmitted into the sample; i0 denotes
initial states. The pressure P, density !, and internal energy E
are the thermodynamic variables, and U and u are the shock
velocity and fluid velocity behind the shock front, respec-
tively. By measuring two observables and combining these
with Eqs. !1"–!3", the remaining parameters can be deter-
mined. This determination is obtained because conservation
of mass and momentum is maintained at the interface be-
tween the standard and the sample upon the passage of the
shock front through it, so that the sample and standard main-
tain a common pressure and fluid velocity at the interface
between them. Once these quantities are known the Rankine-
Hugoniot relations can be applied to determine ! and E in
the sample.

To determine the common P2 and u2 at the standard-
sample interface, calculations are generally carried out on the

P-u plane,1,2 as shown in Fig. 1!a". The state !u1 , P1" lies on
the known principal Hugoniot of the standard. The unknown
state in the sample !u2 , P2" lies along a straight line of slope
!20U2 passing through the origin of the P-u plane !P20=0 in
most cases", following the relation given by Eq. !2". The
states !u1 , P1" in the standard and !u2 , P2" in the sample are
connected by the reflected wave in the standard; this connec-
tion follows a curve that originates from the state along the
principal Hugoniot and moves off the Hugoniot. The branch
of this curve reaching higher pressures follows a second
shock Hugoniot, centered on the state !1, P1, and E1, and can
be expressed by an equation of the form

PR1!u" = P1 + !1'u − u1'Û!'u − u1'", u " u1, !4"

which expresses Eq. !2" for the reflected shock in the stan-
dard; Û!u" gives the dependence of shock velocity as a func-
tion of fluid velocity behind the !second" reflected shock.
The branch reaching to lower pressures follows an isentropic
release and can be found by computing the integral,

u = u1 − (
P1

P2 dP

!R1cR1
, P2 " P1, !5"

where !R1 and cR1 are the density and isentropic sound ve-
locity, respectively, in the standard evaluated along an inte-
gration path that follows the thermodynamic isentrope pass-
ing through the state !!1 , P1 ,E1". In either case, these curves
cannot be computed accurately without knowledge of the
equation of state of the standard both on and off the principal
Hugoniot. In most situations only limited knowledge of the
off-Hugoniot states in the standard is available, and therefore
model-dependent input is required to determine the reshock
and release profiles.

B. Systematic effects

Systematic effects enter through the fact that uncertain-
ties are associated with the principal Hugoniot and with the
off-Hugoniot curves used to construct the solution in Fig.
1!a". Depending on the method of analysis, there may also
exist a systematic bias either because the model used for the
analysis may misfit the available data in a systematic way
!e.g., may represent the reference EOS either on the soft or
the stiff side of the available data" or because the method
used to evaluate the off-Hugoniot curves may contain ap-
proximations. Both the systematic uncertainty and bias tend
to cause a general shift the analyzed the data as a group !e.g.,
to be more or less compressible depending on whether a soft
or stiff bias is present in the model for the standard".

For the off-Hugoniot states a well-known practical ap-
proximation is a graphical construction which approximates
the reshock and release profiles by the mirror reflection of
the principal Hugoniot in the P-u plane about the point along
the Hugoniot corresponding to the incident shock state in the
reference standard.1,2 For sample materials with similar im-
pedance to that of the standard, or at low pressures
!"0.2 TPa", this construction allows for remarkably accurate
results, but the accuracy diminishes for greater mismatch of
the impedances and with high !#0.2 TPa" incident shock
pressure. The advantage of the mirror-reflected Hugoniot ap-

FIG. 1. !Color online" !a" Graphical representation of impedance-match
analysis for an incident shock of 1.4 TPa in Al. The solid !red" curve with
positive slope is the principal Hugoniot of the Al standard, and the incident
shock state is indicated by the filled circle at !u1 , P1". A low-impedance
sample is represented by the lower dash-dot line and the impedance-match
state !u2 , P2" while a high-impedance sample produces a reflected shock and
the state !u2! , P2!". The solid !blue" curve of negative slope shows locus of
states accessed by the reflected shock and release states, PR1

!u", passing
through !u1 , P1"; the dashed !black" curve of negative slope shows the mir-
ror reflection of the principal Hugoniot PM1

!u". !b" The pressure correction
PC1

!dash-dot curve" shows the difference PR1
− PM1

, corresponding to the
Hugoniot states above.
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proximation is that the uncertainty in the principal Hugoniot
can be propagated into the mirror-reflection construction
with standard methods. However, especially at high pres-
sures, the mirror-reflection approximation differs systemati-
cally from the exact reshock and release curves,19 as indi-
cated Fig. 1!a"; therefore its use will impose a systematic
bias. The accuracy of this approximation has been examined
experimentally20,21 and theoretically22 for release states in
several materials. The latter study estimated, based on theo-
retical models, that the range of validity for the use of the
mirror-reflection approximation requires u2 /u1−1"0.6 in
order that the systematic errors $u2sys /u2"1% –1.5% in de-
termining u2 for low-impedance samples. This limit restricts
the analysis to sample densities !20#0.6 g cm−3 in the case
of an Al reference standard.

The obvious solution to this situation is to apply a cor-
rection, as suggested by Fig. 1!b". For example, expressions
for reshock and release states using the Mie-Grüneisen
model have been worked out by McQueen et al.;23 along
these lines Nellis and co-workers have applied such a correc-
tion in the analysis of impedance-match data of shock-
compressed fluids.5,24 However, for applications over a wide
range of states, the common Grüneisen approximations such
as % /V=const are not general enough; for example, in the
high-pressure domain %)0.4)const for a wide range of
materials.25 Our aim is to construct a correction valid over a
wide range !0.1" P"3 TPa", where thermal electronic and
ionic contributions to the pressure become dominant.

Because of the issues outlined above, the recent
studies8–18 that we are aware of avoid the mirror-reflected
Hugoniot approximation and instead use theoretical EOS
models !different authors use different models" both to rep-
resent the principal Hugoniot of the standard and to compute
the accurate off-Hugoniot states. By construction the EOS
model is usually fit to a subset of the available data for the
standard and contains rigorous theoretical content to repre-
sent the reshock and release profiles accurately. This pro-
vides a significant advantage but comes at the expense of
eliminating any representation of the uncertainties in the un-
derlying Hugoniot data or uncertainties in the parameters
used to construct the model. In the widely used SESAME

library26 there exist several theoretical EOS models for alu-
minum; these were constructed for a variety of reasons, with
varying levels of theoretical rigor and with varying qualities
of fit to the available data. When used for impedance-match
analysis all produce somewhat different results.

III. IMPEDANCE-MATCH ANALYSIS INCLUDING
SYSTEMATIC EFFECTS

In this section we present a method for performing
impedance-match EOS data reduction and error propagation
that addresses the issues raised above. Following the ap-
proaches outlined earlier by Nellis and Mitchell,5 we com-
bine !i" the measured principal Hugoniot of the standard, as
given by a fit to the available absolute !i.e., model indepen-
dent" data and !ii" an additional polynomial, as suggested in

Fig. 1!b", that corrects the mirror-reflection approximation to
produce an accurate representation of the off-Hugoniot states
!reshock and release".

As outlined in Sec. II A, calculations take place in the
P-u plane, for which u is viewed as the independent variable
and P as the dependent variable. The principal Hugoniot of
the standard is represented by the function U!u", giving the
shock velocity U as a function of particle velocity u along
the Hugoniot. The pressure along the principal Hugoniot is
given by

PH!u" = !10uU!u" !6"

!from Eq. !1"". From a measurement of the shock state in the
standard, the fluid velocity behind the shock, u1, can be de-
termined, and the mirror-reflected Hugoniot can be defined,

PM1
!u" = PH!2u1 − u" = !10!2u1 − u"U!2u1 − u" . !7"

Accurate reshock and release profiles PR1
!u" are then pro-

duced by correcting the mirror-reflected curve with a model-
dependent pressure correction PC1

!u", that is,

PR1
!u" = PM1!u" + PC1

!u" , !8"

where the subscript 1 indicates an explicit dependence of
these functions on the incident state, parametrized by u1. As
noted above, the pressure correction is necessary to remove
the systematic bias of the mirror-reflected Hugoniot approxi-
mation over a wide range of pressures !i.e., samples with
much higher or lower impedance than the standard".

The second observable in an experiment is the measured
shock velocity of the shock transmitted into the sample, U2.
Using this variable the impedance-match solution is found
by solving the equation PR1

!u"−!20uU2=0 for u, or more
explicitly,

!10!2u1 − u"U!2u1 − u" + PC1
!u" − !20uU2 = 0; !9"

the solution yields the value u2, which then yields P2, !2, and
E2 through Eqs. !1"–!3".

The two main functions in the analysis, U!u" and PC1
!u",

are constructed through fitting procedures. The available
Hugoniot data define U!u" and therefore PH!u" and PM1

!u".
The correction PC1

is estimated from an average over several
theoretical models. The fitting procedures allow us to deter-
mine systematic uncertainties: The standard deviation in the
fit to U!u" gives the function &U!u" and the standard devia-
tion of PC1

!u" derived from an ensemble of theoretical mod-
els gives the function &PC1

!u". These additional functions can
be introduced into Eq. !9" in order to propagate the system-
atic uncertainties. In the sections below we give explicit defi-
nitions for all of these functions.

For both U!u" and PC1
!u" the fits employ orthogonal

polynomials with coefficients ai and bi, respectively, that
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have been assigned with uncertainties &ai
and &bi

determined
through the fitting procedures. Orthogonal polynomial con-
structions are employed so that the error contributions for
each coefficient are easily evaluated and combined in
quadrature to produce a total evaluation for the uncertainties,

&U = *+
j

&aj

2 % #U

#aj
&2,1/2

and !10"

&PC1
= *+

j
&bj

2 % #PC1

#bj
&2,1/2

.

A. Fit to the principal Hugoniot

The primary means of representing the principal Hugo-
niot of a shock-wave reference standard is through the rela-
tionship between shock speed and particle speed. For most
cases this relationship has been demonstrated to be linear
!sometimes with small quadratic corrections" over large
ranges of these variables and is typically represented by the
equation

U = C + Su + Tu2, !11"

where U is the shock velocity, u is the fluid velocity behind
the shock, and C, S, and T are the fitting parameters. Stan-
dard deviation uncertainties for the fitting parameters are
usually given when the Hugoniot results are reported. These
standard deviations are given by standard error analysis ex-
pressions, for example, in the case of &C,

&C = *+
j

& j
2% #C

#Uj
&2,1/2

, !12"

where & j is the standard deviation of the jth datum in the
data set used for the fit !more details are given in the Appen-
dix". For propagating the error in an impedance-match analy-
sis, the relevant quantity is the estimated standard deviation
of the shock velocity, &U!u", as a function of the given par-
ticle velocity u. Although it is common to supply uncertain-
ties !±$C, ±$S, and ±$T" when such fits are reported in the
literature, we note that these uncertainties provide incom-
plete information, because &U cannot be derived solely from
the uncertainties in the fit parameters. Specifically,

&U!u" = *+
j

& j
2% #C

#Uj
+ u

#S

#Uj
+ u2 #T

#Uj
&2,1/2

. !13"

Explicit evaluation of this expression involves summations
over cross terms, e.g., ' j& j

2u2!#C /#Uj"!#S /#Uj", which in-
volve covariances between the coefficients of the fit. This
was recognized by Mitchell and Nellis;27 these authors sup-
plied an additional set of coefficients that defined a quadratic
fit to 2&U.

To simplify this situation we use an orthogonal polyno-
mial basis, constructed such that the covariances among the
fitting coefficients vanish; therefore, for the purpose of error

propagation, the coefficients are independent. Using the or-
thogonal polynomial basis, we represent the fit to the Hugo-
niot data with the following expression:

U!u" = a0 + a1!u − (" + a2!u − )1"!u − )2" , !14"

where the parameters ai are the coefficients of the fit and (,
)1, and )2 are the parameters of the orthogonal basis. The
fitting process also determines the standard deviations &ai

for
each of the coefficients. The standard deviation in the fit, &U,
is represented in terms of the standard deviations of the co-
efficients,

&U!u" = #&a0

2 + &a1

2 !u − ("2 + &a2

2 !u − )1"2!u − )2"2$1/2.

!15"

The Appendix gives an explicit procedure for generating
these parameters from a primary Hugoniot data set.

B. Off-Hugoniot correction

The off-Hugoniot correction is defined in terms of nor-
malized variables,

PC1
!u" = PH!u1"pn1

!u/u1 − 1" , !16"

where pn1
!q" is the pressure correction normalized against

the Hugoniot pressure PH!u1" of the incident shock in the
standard, and the variable q=u /u1−1 is a normalized particle
velocity with the origin shifted such that the two branches of
the pressure correction are centered at q=0. For reflected
shocks !reshocks", q"0, and for release waves q#0. The
particle velocity u1 is determined from the inverse relation
u1=U−1!U1".

The pressure correction is expanded in a series of the
Chebyshev polynomials and given by an expression defined
as follows:

pn1
!q"

= -+
i=1

2

bsi!u1"#Ti!3q + 1" − 1$ for − 2/3 " q * 0

+
i=1

3

bri!u1"#Ti!2q − 1" − !− 1"i$ for 0 " q * 1, .
!17"

where Ti are the Chebyshev polynomials28 of order i. The
coefficients bsi!u1" and bri!u1" and their respective uncertain-
ties depend on the particle velocity u1 and are determined
through fitting procedures as described in the Appendix.

As with the expression for &U!u", the standard deviation
of the pressure correction depends on the uncertainties in the
fitting coefficients. By construction the Chebyshev polyno-
mials are orthogonal over the domain of the fit, and the in-
dividual coefficient uncertainties can be combined in a
quadrature form, as indicated in Eq. !10", leading to the ex-
pression
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&pn1
!q" = -*+

i=1

2

&bsi
!u1"2#Ti!3q + 1" − 1$2,1/2

for − 2/3 " q * 0

*+
i=1

3

&bri
!u1"2#Ti!2q − 1" − !− 1"i$2,1/2

for 0 " q * 1. . !18"

The uncertainty in the pressure correction as a function of the
particle velocity is

&PC1
!u" = PH!u1"&pn1

!u/u1 − 1" . !19"

The Appendix describes in detail the method for generating
the fitting coefficients and their uncertainties from a set of
theoretical models.

C. Implementation for impedance-match analysis

In order to propagate systematic errors, the functions
U!u" and PC1

!u" have to be combined with their respective
uncertainties, &U!u" and &PC1

!u". For that purpose we intro-
duce modified versions of the functions introduced above,

U*!u;+" = U!u" + +&U!u" , !20"

PH
* !u;+" = !10uU*!u;+" , !21"

PC1

* !u,u1;+,," = PH
* !u1;+"#pn1

!u/u1 − 1"

+ ,&pn1
!u/u1 − 1"$ . !22"

Here the parameters + and , introduce systematic variations
to the impedance-match curves measured in units of the stan-
dard deviations. For example U*!u ;1" represents a U-u
Hugoniot curve that is offset systematically on the stiff side
by one standard deviation from the best-fit curve.

The propagation of systematic errors differs depending
on whether the shock state in the standard is determined by
observing the shock velocity U1 !laser-driven shock or
nuclear impedance-match experiments" or the particle veloc-
ity u1 !for example, by symmetric impact of a flyer plate
whose velocity is known". The two cases are treated sepa-
rately in the following sections.

1. Analysis with U1 observable

For measurements in this class the primary observables
!with random errors" are U1±$U1 and U2±$U2, the shock
velocities in the standard and sample, respectively. In this
situation there is a systematic uncertainty in the value of u1
arising from the uncertainty in the EOS. Consequently, both
the pressure P1 and the particle velocity u1 of the launch
point for the reshock or release profiles vary with a variation
in the EOS of the standard. At this point we also introduce
the parameters - and . to propagate the random errors. Tak-
ing these into account we introduce the variable u1+-

* , which
depends on +, -, U1, and $U1, and is found by solving the

equation U*!u1+-
* ;+"=U1+-$U1. The impedance-match solu-

tion equation !9" modified to include systematic and random
variations is then given by

!10#2u1+-
* − u$U*!2u1+-

* − u;+" + PC1

* !u,u1+-
* ;+,,"

− !20u#U2 + .$U2$ = 0. !23"

Solution of this equation for u yields u2!+ ,, ,- ,.", and the
Rankine-Hugoniot relation equations #!1"–!3"$ are then used
to determine P2!+ ,, ,- ,.", !2!+ ,, ,- ,.", and E2!+ ,, ,- ,.".

The nominal !neutrally biased" solution is found initially
for ,=+=-=.=0. A series partial derivatives,

#u2

#+
,
#u2

#,
,
#P2

#+
,
#P2

#,
, . . . ,

are needed to calculate the uncertainties. These are most eas-
ily found numerically, e.g.,

#u2

#+
/

u2!0.01,0,0,0" − u2!0,0,0,0"
0.01

. !24"

Since the uncertainty in the principal Hugoniot !+ variation"
originates from the data alone and the uncertainty in the off-
Hugoniot corrections !, variation" originates from theoretical
models, they are uncorrelated. Therefore, we estimate the
total systematic uncertainty by adding the two components in
quadrature,

&u2sys = *% #u2

#+
&2

+ % #u2

#,
&2,1/2

, !25"

which gives the systematic uncertainty at 1& deviation. Simi-
lar expressions give the corresponding &P2sys

, &!2sys
, and

&E2sys
.

Random uncertainties are determined in a similar fash-
ion, by computing, for example,

&u2ran = *% #u2

#-
&2

+ % #u2

#.
&2,1/2

. !26"

This expression and the corresponding expressions for &P2ran
,

&!2ran
, and &E2ran

are equivalent to the usual expressions for
propagating the random errors in impedance-match
expressions.15,27

A graphical illustration of the systematic variations is
shown in Fig. 2, which shows the 1& variations as dashed
and dotted lines above and below the nominal reshock/
release profile. Important to note is the inversion of the soft
and stiff variations when the uncertainties are mapped onto
the reshock/release profiles. For example, the stiff variation
that lies above the principal Hugoniot intersects the Rayleigh
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line of the incident shock with u1
*"u1 and P1

*" P1, and as a
consequence it is launched below the nominal reshock/
release profile. However, since it is stiffer !steeper" than the
nominal profile, it tends to remain parallel. When impedance
matching with very soft sample materials, the Hugoniot con-
tribution to the systematic uncertainty can be comparable in
magnitude to the uncertainty in the off-Hugoniot correction.

2. Analysis with u1 observable

With flyer-plate experiments it is possible to accurately
determine the particle velocity in the standard !largely inde-
pendent of the EOS of the standard"; in this case the primary
observables are u1±$u1 and U2±$U2, i.e., the particle veloc-
ity in the standard and the shock velocity in the sample. In
this case there is no systematic variation of u1 that depends
on the uncertainty of the EOS because u1 is an observable.
The parameter - associated with the random variation in u1 is
still required, so we define a new variable, u1-

* =u1+-$u1.
The impedance-match equation in this case is

!10#2u1-
* − u$U*!2u1-

* − u;+" + PC1

* !u,u1-
* ;+,," − !20u

/#U2 + .$U2$ = 0. !27"

Solution of the equation and the determination of the partial
derivatives for estimating the uncertainties are otherwise the
same as expressed in Eqs. !23"–!26".

The graphical representation in Fig. 3 reveals an impor-
tant difference between the two experimental cases. The
shock state is identical to that in Fig. 2. However, because u1
is fixed instead of U1, the soft and stiff variations of the
Hugoniot uncertainty produce curves on the reshock/release
profile that are not inverted relative to the Hugoniot. That is,
the stiff variation, which lies above the Hugoniot, also lies
above the reshock/release profile and vice versa for the soft.
Furthermore, because u1 is fixed, the variation corresponding

to the Hugoniot uncertainty is about 1 /4–1/3 that of the U1
case. For strong release states this means that the dominant
systematic uncertainty contribution is from &PC1

!u", and the
&U!u" contribution becomes negligible.

IV. WIDE RANGE IMPEDANCE-MATCH EOS
FOR ALUMINUM

Aluminum is an important impedance-match EOS stan-
dard; it is used frequently for impedance-match EOS experi-
ments on other materials. This status has motivated a number
of studies to carry out accurate absolute shock-wave EOS on
Al. To construct a principal Hugoniot for the Al standard, we
considered only absolute EOS measurements. A key feature
of such measurements is that both the particle velocity u and
shock velocity U are determined in a model-independent
way. Our EOS is intended for applications primarily at pres-
sures #0.1 TPa, so we do not consider the data for P
"0.03 TPa. In the lower pressure range early experiments
by Al’tshuler et al.29 produced data to 200 GPa using explo-
sively driven Fe flyer plates. Later Mitchell and Nellis27 pro-
vided very accurate measurements from 30–170 GPa using
Al and Ta flyer plates launched with a two-stage light gas
gun. More recently Knudson et al. have produced data of
nearly comparable accuracy to extend the flyer-plate data to
500 GPa !Ref. 30" and higher31 using magnetically launched
flyer plates. Above this range the experimental methods are
more challenging, the available data are very sparse, and the
accuracy is poorer. Simonenko and co-workers32,33 described
absolute measurements at 1 and 3 TPa; they measured the
particle velocity by observing the motion of a ) source em-
bedded in the sample as it moved past a series of collimated
apertures. Podurets et al.34 reported an absolute measurement
of the Al Hugoniot at 1.7 TPa using an improved version of
the technique described by Simonenko and co-workers. In
Table I we provide a partial list the available absolute data
used to generate our fits.31 We point out that the report of
Simonenko et al.32 is a refined analysis of a preliminary re-
sult that appeared originally in the work Volkov et al.;33

FIG. 2. !Color online" Systematics of impedance-match analysis for U1-type
measurements with a low-impedance sample. The U1 and U2 observables
correspond to the two !dash-dot" Rayleigh lines. The principal Hugoniot
!reshock-release curve" is shown as the solid red !blue" curves. Systematic
variations of the principal Hugoniot are represented by the dashed curves.
Systematic variations of the off-Hugoniot states are represented by the dash-
dot curves. The upper right frame shows a detail of the systematics of
determining the reshock-release curves from an uncertain principal Hugo-
niot. The lower right frame shows the impedance-match solution for a low-
impedance sample.

FIG. 3. !Color online" Systematics of impedance-match analysis for u1-type
measurements with a low-impedance sample. The u1 observable is repre-
sented by the vertical dash-dot line; other than this difference, the states are
identical to those in Fig. 2, as is the meaning of the curves. In this situation
the Hugoniot uncertainty is almost negligible in comparison to that in Fig. 2.
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since the analysis of Simonenko et al. supersedes the result
of Volkov et al., we do not include the original datum of
Volkov et al. Table I.

Besides the absolute data we note that there also exists
an extensive data set of relative measurements on Al, i.e.,
shock measurements that are themselves impedance-match
measurements relative to another standard, usually Fe, Mo,
or SiO2. We do not include these data in our fit and empha-
size that only the absolute data in Table I and in Ref. 31 were
used to determine the principal Hugoniot fit.

A. Principal Hugoniot of Al

It is well-known that the Hugoniot curves for many met-
als that do not pass through phase transitions under shock are
well fitted with a piecewise linear form.4,25 We have fitted the
Al EOS data using several functional forms and used an F
test to determine the optimum fit with the least number of
parameters. A sequence of fitting forms with increasing num-
bers of parameters were tested. These were linear !two coef-

ficients", quadratic !three coefficients", piecewise linear/
linear !four coefficients", piecewise linear/quadratic !five
coefficients", and piecewise quadratic/quadratic !six coeffi-
cients". The piecewise fits were determined iteratively by
separating the data into upper and lower sections: points ui

#ubrk were assigned to the upper segment and ui*ubrk to
the lower segment, where ubrk is the particle velocity at in-
tersection of the piecewise segments. The value of ubrk was
determined at each iteration and then used to redivide the
data for the next iteration; the iterations were terminated
when ubrk reach a stable value !near 7±1 km/s for Al". The
F-test criterion !evaluated at a 10% probability cutoff" indi-
cated that the fit was improved up to the piecewise linear/
linear case; beyond that level !e.g., linear/quadratic or
quadratic/quadratic" both the data and theoretical
considerations25 do not justify the use of a higher-order fit.

The coefficients and uncertainties of the piecewise
linear/linear best fit are given in Table II. The fit is also
displayed in Fig. 4!a" where the solid curve shows the Al

TABLE I. Absolute shock-wave Hugoniot data for the Al shock Hugoniot for P#0.1 TPa. The table lists the
shock velocity U and particle velocity u with the associated measurement errors as given in the published data.
This is part of the underlying data set for the fit given in Table II and is shown in Fig. 4.

U
!km/s"

$U
!km/s"

u
!km/s"

$u
!km/s" Method Year Reference

7.445 0.043 1.520 0.002 Symmetric impact 1981 27
7.964 0.057 1.885 0.002 Symmetric impact 1981 27
8.810 0.056 2.522 0.003 Symmetric impact 1981 27
9.13 0.09 2.800 0.028 Symmetric impact 1960 29
9.406 0.062 2.992 0.003 Symmetric impact 1981 27

10.17 0.07 3.592 0.004 Symmetric impact 1981 27
10.39 0.10 3.700 0.037 Fe plate impact 1960 29
10.57 0.10 3.902 0.012 Ta plate impact 1981 27
11.08 0.28 4.13 0.05 Symmetric impact 2003 30
11.36 0.28 4.37 0.05 Symmetric impact 2003 30
11.25 0.11 4.382 0.013 Ta plate impact 1981 27
11.59 0.13 4.626 0.015 Ta plate impact 1981 27
11.77 0.11 4.765 0.014 Ta plate impact 1981 27
12.00 0.12 4.900 0.014 Ta plate impact 1981 27
12.04 0.13 5.007 0.016 Ta plate impact 1981 27
12.14 0.13 5.052 0.015 Ta plate impact 1981 27
12.16 0.11 5.100 0.014 Ta plate impact 1981 27
12.94 0.13 5.620 0.056 Fe plate impact 1960 29
13.77 0.45 6.38 0.07 Symmetric impact 2003 30
14.01 0.22 6.53 0.07 Symmetric impact 2003 30
14.64 0.23 7.09 0.09 Symmetric impact 2003 30
14.67 0.47 7.05 0.09 Symmetric impact 2003 30
14.91 0.24 7.21 0.09 Symmetric impact 2003 30
15.03 0.24 7.21 0.09 Symmetric impact 2003 30
15.11 0.24 7.42 0.09 Symmetric impact 2003 30
15.25 0.50 7.44 0.10 Symmetric impact 2003 30
15.23 0.50 7.50 0.10 Symmetric impact 2003 30
16.08 0.27 8.08 0.10 Symmetric impact 2003 30
17.83 0.59 9.59 0.15 Symmetric impact 2003 30
17.82 0.20 9.66 0.16 Symmetric impact 2003 30
17.89 0.20 9.81 0.18 Symmetric impact 2003 30
23.4 0.6 14.5 0.3 ) reference 1985 32
24.2 0.7 15.1 0.4 ) reference 1985 32
30.5 0.7 21.0 0.6 ) reference 1994 34
40.0 0.7 30.0 2.0 ) reference 1985 32
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Hugoniot fit U!u", and the dashed !dotted" curves show
U!u"±&U!u" #U!u"±2&U!u"$ together with the data points
!ui ,Ui" used to generate the fit. At low pressures the data are
very accurate, and the uncertainties of the fit are hidden
within the width of the drawn lines. A clearer picture of the
details of the fit relative to the data set is shown in Fig. 4!b",
which displays the residuals #Ui−U!ui"$ /U!ui". Almost all of
the data lies within 1% of the fit; a large fraction lies within
0.5%. The dashed !dotted" curves show ±&U!u" /U!u"
#±2&U!u" /U!u"$. From these curves one can see that
±&U!u" /U!u""0.5% for u"10 km/s, and 0.7%
"&U!u" /U!u""1.3% for 10"u"32 km/s. Because of the
piecewise segmentation of the fit, the uncertainty &U!u" is
discontinuous at the break point !u=6.8 km/s"; this will pro-
duce a slight discontinuity in error estimates for the data
analyzed at incident shock states in Al near this discontinuity
!260 GPa".

It is interesting to compare our best fit with the Hugoniot
predictions from several theoretical models and fits previ-
ously published in the literature. In particular, we examine
the SESAME !Ref. 26" 3719 and 3700 !Refs. 35 and 36" tabu-
lar EOS models because these have been used previously in
impedance-match analysis. The 3719 table has been used by
us to analyze impedance-match data previously.8,14 The 3700
table, calculated by Kerley,35 was used by Knudson and
co-workers15,21 to analyze impedance-match data on liquid
D2. Also shown are three other Hugoniot curves: First, a
theoretical Hugoniot that appeared in the work of Mitchell
et al.11 was used to analyze nuclear-explosive-driven
impedance-match data; this Hugoniot was extracted from
Fig. 4 of that work. Second, a linear fit reported by Trunin
et al.37 to fit the ultrahigh pressure range given by U=5.9
+1.19u is valid in the range 11"u"70 !units in km/s".
Third, a more recent wide range fit due to Trunin et al.38 is
used to define an Al standard for the analysis of a large set of
impedance-match data, a piecewise fit given by U=5.333
+1.356u for u*6.1 and U=6.541+1.158u for 6.1*u*22
!units in km/s". Figure 4!c" compares these models and fits
by showing the relative deviation #Um!u"−U!u"$ /U!u" for
each model m.

At low pressures, for u"7 km/s, 3719 model is clearly
too soft but converges towards 3700 for u#10 km/s. Both
of these lie near the U!u"+2&U!u" curve for u#14 km/s,
which is significantly stiffer than our fit. The other SESAME

tables 3713 and 3715 as well as the quotidian equation of
state !QEOS" of More et al.39 !not shown" also show a simi-
lar relatively stiff trend. If we focus on the range 6"u
"22 km/s !excluding the u=30 km/s datum of Simonenko
et al.", it is evident that our best fit, 3700, 3719, and

Trunin-01 pass through the error bars of almost all the points
in this range; thus it can be claimed that all of the models
!excluding Mitchell-91" are in good agreement with the data.
The reduced 01

2 statistics evaluated for each of these models
relative to the data in the range 6"u"22 km/s have values
of 01F

2 =0.138 for our best fit and 01m

2 =0.177, 0.361, and
0.405 for Trunin-01, 3700, and 3719, respectively !here 1
=23, given 25 data points, and assuming a linear two-
parameter form represents the model in the range". Since
01

2"1 for all cases, all the models represent good fits. How-
ever, the fact that 01

2 is significantly less than unity in all
cases indicates that the given error bars are overestimated;
therefore, the 01

2 statistics are not useful for distinguishing
between models. A more meaningful question is what is the
probability that model A is more correct than model B rela-

FIG. 4. !Color online" !a" Absolute Al Hugoniot data in the U-u plane, from
Ref. 29—inverted triangles, Ref. 27—solid squares, Ref. 30—solid tri-
angles, Ref. 32—solid circles, and Ref. 34—solid diamond. The piecewise
linear best fit is the solid black line; the ±&U !±2&U" uncertainty limits are
delimited by the black dashed !dotted" curves. !b" Residuals #Ui
−U!ui"$ /U!ui" of the Hugoniot data and the relative uncertainties of the fit:
±&U /U !dashed" and ±2&U /U !dotted". !c" Similar to !b" showing the rela-
tive deviations of several Al EOS models from the best fit: #Um!u"
−U!u"$ /U!u". References to the labeled curves are Mitchell-91 !Ref. 11"
!solid, green", 3700 !Ref. 35" !dash-dot-dot, blue", 3719 !Ref. 26" !solid,
red", Trunin-95 !Ref. 37" !dash-dot, magenta", and Trunin-01 !Ref. 38"
!solid, grey".

TABLE II. Piecewise linear-linear fit to absolute measurements of the prin-
cipal Hugoniot at Al. The fit was determined using procedures outlined in
Secs. III A and IV and the Appendix. For the segmented linear-linear fit
expressed here, the quadratic coefficients are a2=0 and &a2

=0.

Fitting range
!km/s"

a0±&a0
!km/s" a1±&a1

(
!km/s"

u*6.763 9.449±0.020 1.324±0.016 3.0220
6.763"u*30 17.992±0.078 1.167±0.026 9.8381
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tive to the given data set? This question can be answered by
performing an F test, that is, by computing PF!F ,11 ,12"
where PF is the F-distribution probability for exceeding F
and F=01m

2 /01F

2 is the ratio of the two 01
2 statistics with 11

and 12 are degrees of freedom, respectively.40 In our case
1F=1m=23. We find probabilities of 28%, 1.3%, and 0.6%
that the Trunin-01, 3700, and 3719 models, respectively, are
better representations of the data than our best fit in the range
6"u"22 km/s. In other words, this suggests #98% prob-
ability that 3700 and 3719 are too stiff relative to the existing
data set.

B. Pressure corrections

The pressure corrections for our Al EOS were generated
by averaging the pressure corrections predicted by five dif-
ferent EOS models using the method described in the Appen-
dix. The results are tabulated as a set of fitting coefficients,
listed in Table III, and are used in Eqs. !16"–!19" to produce
quantitative evaluations of the pressure correction PC1

!u".
The pressure corrections were averaged over a set that in-
cluded SESAME models 3713, 3715, and 3719; Kerley’s 3700
table;35,36,41 and the QEOS model.39 Figure 5 shows the sys-
tematic trends of the pressure corrections. At low shock am-
plitudes !u1*4 km/s" the magnitude of the pressure correc-
tion is less than 3% for all values of q, indicating that the
mirror-reflection approximation is accurate at low pressures.
At higher pressures the correction increases significantly on
the reshock branch, especially for large impedance mis-
matches: for q"−0.5 it exceeds 40% of P1 for u1
#25 km/s. On the release branch, however, the magnitude
of the correction never exceeds 5% of P1 for all values of q;
however, one should be aware that P22 P1 for large q, so the
correction is significant relative to P2. Also notable is the fact

that pn1
!q"#0 for all q at low shock amplitudes, while at

higher amplitudes the correction curve takes on a character-
istic oscillation: There is a finite range 0*q*0.5 where
pn1

!q""0 on the release branch. The pressure correction is
entirely model dependent; therefore, it is important to com-
pare the correction against available data in order to assess
its validity.

1. Reshock branch

In Figs. 6!a"–6!c" plotted is a series of reshock data mea-
sured by Nellis et al.42 for double-shocked Al using Ta and
Cu anvils. The experiments determined the reshock state
!u2±$u2 , P2±$P2" produced from a known incident shock
state !u1 , P1" by observing the shock state in an anvil whose
EOS has previously been determined. By constructing the
quantity #P2− PM1

!u2"$ / PH!u1" we obtain an experimental
determination of the pressure correction relative to the mirror
reflection of our best-fit Hugoniot; in the figure this is plotted
versus the normalized particle velocity q2=u2 /u1−1, where
PM1

and PH are defined in Eqs. !7", !6", and !14" and Table
II. Since u and q are regarded as independent variables, the
measurement error $u2 is incorporated into the uncertainty in
the measured pressure correction,

$pn1
!q2" =

1
PH!u1"

0!$P2"2 + !'dPR1
/du'2"2!$u2"2, !28"

where 'dPR1
/du'2 is the slope of the Al reshock curve at the

u=u2 measurement state. The datum in Fig. 6!d" compares a
reshock point at 1.4 TPa reported by Trunin et al.37 No un-
certainties were reported for the latter point; these were es-
timated by assuming the same relative errors as reported by
Nellis et al. For the range of velocities and pressures for
which the data are available, the pressure corrections are in

TABLE III. Coefficients for the pressure correction in shock compressed Al as expressed in Eqs. !17" and !18".
For each impedance-match experiment the coefficients for the pressure correction and its uncertainty are
determined by linear interpolation in this table, using the particle velocity u1 in the shock incident in the
standard as the independent variable.

u1

!km/s"
bs1 !&bs1

"
!/10−3"

bs2 !&bs2
"

!/10−3"
br1 !&br1

"
!/10−3"

br2 !&br2
"

!/10−3"
br3 !&br3

"
!/10−3"

0 0 !00" 0.0 !0.0" 0.0 !0.0" 0.0 !0.0" 0.0 !0.0"
2 −1 !00" 0.0 !0.3" 4.5 !3.8" −0.8 !2.7" −1.3 !2.1"
4 −23 !11" 3.3 !1.0" 20.1 !11.9" −3.8 !3.9" −2.3 !1.5"
6 −75 !06" 15.4 !4.0" 22.4 !7.5" −0.8 !5.8" −4.3 !1.3"
8 −112 !19" 22.2 !4.7" 27.8 !9.0" 1.6 !6.7" −7.5 !2.8"

10 −142 !25" 28.1 !2.0" 29.2 !6.2" 4.7 !6.3" −7.6 !3.1"
12 −171 !22" 36.0 !3.9" 30.4 !6.2" 5.2 !6.3" −9.0 !2.9"
14 −201 !20" 43.3 !4.3" 31.6 !6.2" 5.7 !6.1" −9.9 !2.6"
16 −228 !20" 48.6 !4.2" 32.4 !6.3" 5.8 !6.0" −10.5 !2.2"
18 −253 !22" 52.9 !3.7" 33.2 !6.2" 5.9 !6.0" −11.2 !1.7"
20 −277 !25" 57.2 !5.3" 33.7 !6.0" 6.2 !6.2" −11.8 !1.2"
22 −311 !17" 61.9 !7.2" 33.4 !6.0" 6.1 !7.5" −12.6 !0.7"
24 −333 !24" 64.4 !9.7" 34.2 !5.0" 5.8 !9.1" −12.7 !0.6"
26 −350 !28" 66.9 !11.8" 35.1 !4.2" 7.6 !7.7" −14.3 !0.8"
28 −367 !27" 71.2 !10.0" 35.7 !2.6" 8.7 !8.6" −15.5 !1.4"
30 −386 !25" 76.9 !5.1" 35.6 !1.8" 10.3 !7.5" −16.2 !1.9"
32 −407 !25" 82.4 !1.5" 36.0 !1.5" 10.5 !5.8" −16.4 !2.6"
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agreement within the accuracy of the data; however, it is
evident the data are sparse and the accuracy is not high
enough to distinguish between models or to assess the over-
all accuracy of the reshock pressure correction. Nellis et al.
concluded that the data are in very good agreement with the
mirror-reflection approximation. Given that there is no sig-
nificant discrepancy and that the deviation among the models
is smaller than the data accuracy, we can only assume that
the models provide a good representation of the reshock
states.

2. Release branch

For the release branch the most stringent test of the pres-
sure correction is for strong releases. Figure 7 shows a com-
parison of the release branch pressure correction against the
data of Holmes43 and Knudson et al.,21 who measured the
release state !u2±$u2 , P2±$P2" of Al releasing into a SiO2
aerogel foam sample with a known EOS. The measurement
uncertainties $pn1

were calculated as in Sec. IV B 1 with Eq.

!28". The measurements were from initial states at u1
=3 km/s and u1=6.44, 7.5, and 10 km/s, respectively. It is
instructive to focus on Fig. 7!d" where there are a statistically
useful number of data points clustered around q=0.76. Here
we find that the statistical average of the seven data points
!0.036" matches very closely the average theoretical correc-
tion !0.037", and that the standard deviation of the seven data
points !0.015" matches closely the standard deviation among
the theories !0.013". Therefore, the model-averaged release
correction is accurate, and the available data provide no jus-
tification to modify the theoretical content !e.g., to impose a
bias by eliminating or favoring particular models". The fact
that the standard deviations are comparable is fortuitous but
also convenient; since the error bars and standard deviation
of the data are well matched to the standard deviation among
the theoretical models, we can use &pc1

!u" from the models
without modification as close representation of the true !i.e.,
experimental and theoretical" uncertainty in the pressure cor-
rections of the release branch. This also indicates that the
current measurement accuracies, as impressive as they are,
remain insufficient to distinguish among the five theoretical
models examined in this study.

C. Thermodynamic derivatives

The empirical EOS construction developed here is in-
tended primarily for data analysis and to produce accurate
error estimates; it avoids explicit model-dependent func-
tional forms !e.g., Mie-Grüneisen" with the aim of producing
neutrally biased fits. Nevertheless, it is useful to make con-
tact with current theoretical models of the high-pressure Al
EOS. Since the current model provides a description of states
both on and off the principal Hugoniot, it is possible to ex-
tract thermodynamic derivatives, specifically the isentropic
sound velocity cs, the Grüneisen coefficient %, and the Û vs
3u relationships of the second shock Hugoniot curves.

Thermodynamic derivatives can be expressed as alge-
braic combinations of various derivatives taken with respect
to u along the principal Hugoniot and along the reshock/
release curves, i.e., the derivatives dPH /du, dPR1

/du, etc. It
is useful at this point to introduce expressions giving the
volume and energy along the principal Hugoniot. These are

VH!u" =
U!u" − u

!10U!u"
, !29"

EH!u" = E10 +
1
2

#PH!u" + P10$* 1
!10

− VH!u", , !30"

where U!u" is the Hugoniot fit of Eq. !14" and PH!u" is from
Eq. !6". The corresponding expressions along the reshock
Hugoniot are

VR1!u" = VH!u1" − !u − u1"2/#PR1
!u" − PH!u1"$ , !31"

FIG. 5. Solid curves show normalized pressure correction pn1
!q" for reshock

and release profiles centered on states with !a" u1=2.5 km/s, !b" u1
=5 km/s, !c" u1=10 km/s, and !d" u1=25 km/s. Upper !lower" dashed
curves show the curves pn1

!q"+ !−"&pn1
!q", delimiting the ±1& uncertainty

band of the pressure correction.
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ER1!u" = EH!u1" +
1
2

#PH!u1" + PR1
!u"$

/#VH!u1" − VR1!u"$ , !32"

where PR1
!u" is as given by Eqs. !8", !16", and !17". We

develop the thermodynamic derivatives using the reshock
branch rather than the release branch because simple analytic
expressions are easily derived for the thermodynamic quan-
tities using the Rankine-Hugoniot equations. It is not pos-
sible to derive such simple expressions on the release branch,
because integrations along isentropes are required. However,
in the limit of weak shocks, the second shock Hugoniot fol-
lows the isentrope very closely.

In the process of evaluating the derivatives of these
terms, it is also convenient to express the pressure correction
in the form of a Taylor series expanded about q=u /u1−1,

i.e., about states !u1 , P1" along the principal Hugoniot. To
second order in q the pressure correction can be expressed as

pn1
!q" = Aq + Bq2, !33"

where the coefficients A and B and their respective uncer-
tainties are expressed in terms of the reshock pressure cor-
rection coefficients,

A = 3bs1 + 12bs2, &A = #9&bs1

2 + 144&bs2

2 $1/2,

B = 18bs2, &B = 18&bs2
. !34"

Here it is implicit that A and B are functions of u1 !since bsi
and bri are functions of u1". Over the range of particle ve-
locities listed in Table III A varies from 0 to −0.22, and &A
varies from 0 to 0.17.

In the expressions below we give expressions valid only
for a linear segment of the u-U shock Hugoniot. The sound
speed is connected with the acoustic impedance and the com-
pressibility, which in turn is related to the slope dPR1

/du of
the reshock/release curve,

FIG. 6. !Color online" Al double shock data !open triangles" in !a"–!c" are
from Ref. 42 and in !d" from Ref. 37. The light curves show pressure
corrections predicted from individual theoretical models: 3715 !solid, red",
3719 !dash, green", 3713 !dot, blue", QEOS !dash-dot, magenta", and 3700
!dash-dot-dot, black". The heavy solid curves show pn1

!q" and the heavy
dashed curves show pn1

!q"±&pn1!q".

FIG. 7. !Color online" Al release profile data !open triangles" in !a" is from
Ref. 43 and in !b"–!d" from Refs. 15 and 21. The curves are as indicated in
the caption for Fig. 6.
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cs!u1" = VH!u1"1dPR1

du
1

u=u1

=
#a0 + !a1 − 1"u1 − a1($2!A − 1"a0 + a1#!A − 2"u1 + !1 − A"($3

a0 + a1!u1 − ("
. !35"

The Grüneisen coefficient % is defined as %= 'V#P /#E'V; this quantity can be derived in a similar fashion from the
principal Hugoniot and reshock/release curves,

%!u1" = VH!u1"1 !dPH/du"!dVH/du"−1 − !dPR1
/du"!dVR1/du"−1

!dEH/du"!dVH/du"−1 − !dER1
/du"!dVR1/du"−11

u=u1

=
1

a1u1
2#a0 + a1!u1 − ("$2*#a0 + !a1 − 1"u1 − (a1$!a1( − a0"

/%−
#a0 + a1!u1 − ("$2#a0 + a1!2u1 − ("$

a0 − a1(
+ 2!A − 1"a0 + a1#!A − 2"u1 − !A − 1"($32&, . !36"

Both cs and % are first derivatives of the pressure on the EOS
surface, and as such they depend only on the first derivatives
of PR1

, PH, ER1
, EH, etc., evaluated along the Hugoniot !i.e.,

u→u1". Therefore, the expressions for cs and % have no
dependence on B, the second-order term of Eq. !33". Further-
more, most of the dependence involves the parameters of the
principal Hugoniot fit !a0, a1 and (", with a small sensitivity
to the precise value of A. Thus the model-dependent contri-
butions to the expressions for cs and % are small; the derived
values depend primarily on the fit to the principal Hugoniot
and therefore on the absolute shock Hugoniot data. The un-
certainties of cs and % are easily calculated from the uncer-
tainties in the underlying parameters, e.g., $cs

= #&A
2!#cs /#A"2+'i&ai

2 !#cs /#ai"2$1/2.
Figure 8 shows cs and % along the principal Hugoniot to

3 TPa. The experimental sound speed data of McQueen
et al.44 are in excellent agreement; the Grüneisen parameter
measurements of Neal45 are also in good agreement except
near the melt transition. Notable in Fig. 8!a" is that above
0.5 TPa cs is somewhat smaller than the average value pre-
dicted by the theoretical models. This is expected because
the piecewise fit to the Hugoniot is significantly softer than
the Hugoniot curves predicted by the models. The uncer-
tainty in cs is quite large at high shock pressures and reflects
the fact that the fit is less accurate at higher pressures. The
dashed curve, lying below the cs curve, is the result if we set
A=0 in Eq. !35"; this is equivalent to assuming that the
mirror-reflection approximation holds true along the Hugo-
niot. The fact that this latter curve lies close to the cs points
indicates that the model-dependent pressure corrections play
a minor role in determining cs, and that the fit to the Hugo-
niot data determines most of the compressibility.

Shock Hugoniot curves for second shocks closely follow

a linear Û vs 3u dependence, Û!'3u'"=cs+ ŝ'3u', where Û is
the velocity of the second shock relative to the medium be-
hind the first shock and 3u=u−u1 is the change in particle
speed between the first shock and second shock states. The
slope ŝ!u1" is given by the equation

ŝ!u1" =
d

du
1*VH!u1"

PR1
!u" − PH!u1"

u − u1
,1

u=u1

=
2a1u1 + B#a0 + a1!u1 − ("$3#a0 + !a1 − 1"u1 − a1($

u1#a0 + a1!u1 − ("$
.

!37"

Evident from this expression is that ŝ depends on the second-
order coefficient B and has no dependence on A. Figure 9
shows a plot of the second shock Hugoniot slope. Above P
)0.5 TPa, the correction introduces a large adjustment to
the estimated value of ŝ, indicating a large model-dependent
contribution. In general second shock states for reshock-type
impedance-match experiments are not “strong” relative to
the first shock state, because P2) P1. Since B is a second-
order correction, it is related to a second derivative of the
EOS surface. A Taylor expansion in u of the Hugoniot car-
ried out by Johnson25 !weak shock limit" relates ŝ to the
isentropic pressure derivative of the bulk modulus,
'#BS /#P's=4ŝ−1, where BS is defined as BS= '!#P /#!'s. Evi-

dently, for shocked Al near 3 TPa, '#BS /#P'S/2.6.

V. EXAMPLES

The best-fit Hugoniot is softer than the available tabular
models for Al at pressures above 1 TPa. Therefore, applica-
tion of this model to existing data reaching into the terapas-
cal range is of interest, because all previous analyses have
used tabular EOS models that are probably too stiff. More
importantly, the examples serve to provide quantitative esti-
mates of the systematic uncertainties in addition to the ran-
dom uncertainties. We show the relative contributions of
these error sources for several relevant cases.

A. Example: High-pressure EOS of Cu and Mo

High-pressure nuclear impedance-match data for Cu and
Mo relative to Al were measured by Mitchell et al.11 and
analyzed with a theoretical EOS for Al that was constructed
by the authors of that work. The principal Hugoniot in Ref.
11 is significantly stiffer than our current best-fit model, cor-
responding to )U!u"+5&U!u" #see Fig. 4!c"$.
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The raw measurement data was published in Table II of
Ref. 11, and thus it is possible to reanalyze these data using
our impedance-match model. The results of this reanalysis
are shown in Fig. 10!a" for the Cu case and Fig. 10!b" for the
Mo case. In addition the detailed results of the impedance-
match analysis are given in Table IV. For both the Cu and
Mo experiments the reanalysis produces a general softening
of the Cu and Mo Hugoniot points, with the largest shift
occurring at the highest pressures; analysis of these points !at
)2.5 TPa" produces approximately 8% higher compression
than the original analysis. The original data as published in
Refs. 11 were significantly stiffer than other experiments and
existing tabular models, a fact that has been noted by
others;46 the analysis brings these impedance-match data into
closer agreement with the existing data and models.

A comparison of the relative contributions of the four
sources of error is of interest to experimentalists designing
future experiments. The contributions from the two system-
atic error sources are balanced and produce a total systematic
uncertainty of about 1.5% in the determination of compres-

FIG. 8. !Color online" !a" Solid circles show the sound velocity cs predicted
by Eq. !35"; the uncertainty in cs is indicated by the error bars. The light
curves show cs as predicted from individual theoretical models: 3715 !solid,
red", 3719 !dash, green", 3713 !dot, blue", QEOS !dash-dot, magenta", and
3700 !dash-dot-dot, black". Both 3715 and 3700 contain a realistic descrip-
tion of the melt transition; this produces the oscillations near 0.15 TPa. The
heavy dashed curve shows cs from !35" for the case when A=0. The open
diamonds show the bulk sound speed data of McQueen et al. !Ref. 44". !b"
Solid circles show the Grüneisen coefficient % predicted by Eq. !36". Open
squares with error bars show the data reported by Neal !Ref. 45". The re-
maining curves have the same correspondence to the models as in !a".

FIG. 9. !Color online" Filled circles show the slope ŝ of the second shock
Hugoniot given by Eq. !37", plotted as a function of shock pressure. Error
bars indicate the uncertainty in ŝ. Light curves are from models as in Fig. 8.
Heavy dashed curve shows the value of ŝ expected for the mirror-reflection
approximation, B=0.

FIG. 10. !Color online" !a" Hugoniot data for Cu on the P-! plane. The
original analysis by Mitchell et al. !Ref. 11" is given by the solid triangles;
the reanalyzed data are shown by the open triangles. The error bars represent
only the random error contribution. Curves show the Hugoniots from three
different SESAME EOS models: 3330 !dashed, red"; 3332 !dotted, blue"; and
3333 !dash-dot, black". The data points are open diamond !Ref. 10", open
square !Ref. 49", and open circle !Ref. 50". !b" Hugoniot data for Mo,
triangles, as in !a". Curves are from SESAME models for Mo: 2980 !dashed,
red" and 2981 !dotted, blue". Data points: open diamond !Ref. 51"; open
circles are the !absolute" gas gun data reported in Ref. 11.
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sion. The measurement error is larger; furthermore, the mag-
nitude of #u2 /#- is about three times larger than #u2 /#.,
indicating that most of the random error contribution comes
from propagating the uncertainty $U1. This is because the
Rayleigh line for the incident shock intersects the Al princi-
pal Hugoniot at an acute angle, which tends to magnify the
contribution of $U1. Since the Rayleigh line of the shock in
the sample tends to intersect the reshock-release curves at
much larger angles, the propagated contribution of $U2 is
much smaller. This is true in general for all U1-type measure-
ments. Therefore, optimized impedance matching with
U1-type measurements will be obtained with experiments op-
timized, if possible, to maintain $U1/0.2−0.3$U2.

Reduction of the measurement uncertainty to a level
much below that of the systematic uncertainty !for this par-
ticular case" is probably not warranted. Although one might
expect future improvement in our knowledge of the principal
Hugoniot of Al, the uncertainty in the off-Hugoniot correc-
tion, as noted in Sec. IV B, is not likely to change without a
significant improvement in measurement accuracies. This as-
sessment must be made on a case to case basis for different
samples and drive pressures.

B. Example: High-pressure EOS of LiF and Al2O3

Laser-driven shock-wave experiments on LiF !to
1.4 TPa" and Al2O3 !to 1.9 TPa" were carried out recently

using an Al reference standard.14 These experiments were
analyzed using the SESAME 3719 table. The raw observa-
tional data !U1 and U2" from these experiments was indi-
cated in Fig. 1 of Ref. 14. We have reanalyzed these data
using our impedance-match model in order to infer more
accurate values for the compression and to provide estimates
of the systematic uncertainties.

The results, listed in Table V, produce slightly higher
compressions owing to the fact that 3719 lies near U!u"
+2&U!u" relative to our best fit in this pressure range. The
LiF compression is about 3% higher and the Al2O3 compres-
sion is about 2% higher. The results also show that the sys-
tematic error in this case is dominated by the uncertainty in
the principal Hugoniot !#u2 /#+"; this is especially so in the
case of LiF which is well matched in impedance to the Al
reference. The total systematic uncertainty in compression is
about 1.5%–2%, about a factor of 4 smaller than the mea-
surement uncertainty.

The measurement errors are dominated by the uncer-
tainty in the measurement of U1 because #u2 /#-)10#u2 /#.;
in these experiments transit-time measurements across a
stepped base plate were used to determine U1 with about
2%–2.5% accuracy. The measurement uncertainties can be
improved by concentrating on improving the measurement
accuracy of U1; methods to achieve this are under active
development.

TABLE IV. Analysis of the impedance-match data from Table II of Mitchell et al. !Ref. 11". Raw data are displayed in columns two to five; the analysis results
are in the adjoining columns. Columns six to nine show a breakdown of the individual error contributions in the determination of &u2

including the
contributions from the measurement errors of the two observables, #u2 /#- and #u2 /#., the systematic uncertainty contribution of the Hugoniot fit #u2 /#+, and
the systematic uncertainty contribution of the off-Hugoniot !reshock" curve #u2 /#,. Uncertainties in the last one or two digits are enclosed in parentheses.
Random and systematic uncertainties, denoted by !ran, sys", for u2 are given by Eqs. !26" and !25", respectively. A similar decomposition of contributions can
be computed for other variables. P2, !2, E2, etc., and is given for P2 and the compression 42=!2 /!20.

Expt.

!10 !20 U1!$U1" U2!$U2"
#u2

#-

#u2

#.

#u2

#+

#u2

#,

u2 !ran, sys"
!km/s"

P2 !ran, sys"
!GPa" 42 !ran, sys"!g cm−3" !km/s" !km/s/10−3"

Cu-1 2.714 8.938 28.00!20" 21.50!20" 167 −54 −131 75 12.74!18,15" 2448!34,29" 2.45!7,4"
Cu-2 2.697 8.934 22.90!20" 18.10!20" 161 −50 −69 55 9.42!17,09" 1523!27,14" 2.08!5,2"
Cu-3 2.699 8.937 17.90!20" 13.70!20" 158 −48 −44 49 6.53!17,07" 799!20,08" 1.91!6,2"
Mo-1 2.714 10.150 28.00!20" 20.50!20" 162 −57 −126 76 12.27!17,15" 2554!36,31" 2.49!7,4"
Mo-2 2.697 10.220 22.90!20" 17.10!20" 157 −53 −66 56 9.06!17,09" 1584!29,15" 2.13!6,2"
Mo-3 2.699 10.220 18.90!30" 13.80!20" 230 −51 −41 53 6.82!24,07" 962!33,09" 1.98!8,2"

TABLE V. Analysis of the impedance-match data from Fig. 1 of Hicks et al. !Ref. 14". The column arrangement is the same as in Table IV.

Expt.

!10 !20 U1!$U1" U2!$U2"
#u2

#-

#u2

#.

#u2

#+

#u2

#,

u2!ran,sys"
!km/s"

P2!ran,sys"
!GPa" 42!ran,sys"!g cm−3" !km/s" !km/s/10−3"

Al2O3−1 2.70 3.97 29.27!84" 28.57!23" 829 −52 −191 55 17.12!83,20" 1942!95,23" 2.50!19,04"
Al2O3−2 2.70 3.97 26.99!39" 26.27!22" 384 −50 −156 43 15.40!39,16" 1606!41,17" 2.42!09,04"
Al2O3−3 2.70 3.97 22.19!45" 22.65!28" 431 −58 −84 38 11.51!43,09" 1035!39,08" 2.03!09,02"
LiF−1 2.70 2.64 27.04!69" 29.26!32" 736 −66 −178 9 17.25!74,18" 1332!58,14" 2.44!16,04"
LiF−2 2.70 2.64 27.93!72" 29.55!26" 774 −56 −195 6 18.14!78,20" 1415!61,15" 2.59!18,04"
LiF−3 2.70 2.64 25.60!47" 26.61!28" 506 −60 −156 3 16.26!51,16" 1143!36,11" 2.57!14,04"
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C. High-pressure EOS of liquid deuterium, flyer-plate
method

A recent series of impedance-match experiments on liq-
uid deuterium !D2" were reported by Knudson et al.15 In
those experiments the shock was driven by a magnetically
accelerated flyer plate, which impacted an Al base plate from
which the shock was transmitted in the D2 sample. Measure-
ments of the flyer-plate velocity were used to determine
u1±$u1 and measurements of the shock velocity in the D2
determined U2±$U2. From these inputs an impedance-match
analysis following the procedure outlined in Sec. III C 2 can
be carried out. The experiments of Knudson et al. were ana-
lyzed using Kerley’s 3700 table for the Al EOS.

A quantitative assessment of the systematic uncertainties
was not carried out in Ref. 15, primarily because of the dif-
ficulties summarized in the Sec. II B. Therefore, we have
reanalyzed a subset of the data presented in Ref. 15 to com-
pare with our impedance-match model and to estimate the
magnitude of the systematic error present in the analysis of
that experiment. Knudson et al. estimated the systematic un-
certainty in the compression to be a few percents and backed
up this assessment with reverberation measurements that cor-
roborated their density determination. Reanalysis of their
data for a subset of eight experiments is given in Table VI.
Examination of this table in comparison with Table I of Ref.
15 shows that the inferred compressions from the two analy-
ses are almost identical !as expected". The average relative
deviations of u2 and 42 are 0.2% and 0.5%, respectively for
the first seven experiments listed in Table VI. For flyer-plate
experiments with low-impedance samples, the off-Hugoniot
uncertainty !#u2 /#," dominates the systematic error; the
Hugoniot uncertainty !#u2 /#+" is )25 times smaller !also as
demonstrated in Fig. 3". As discussed in Sec. III C 2, this
demonstrates an advantage of the flyer-plate technique for
this kind of experiment, because the impedance-match analy-
sis is insensitive to inaccuracies in the principal Hugoniot of
the model used in the analysis. From our impedance-match
analysis the magnitude of the systematic uncertainty is )4%
in the compression !)8% at 2& confidence", which is con-
sistent with the estimates of Knudson et al. This uncertainty

is directly traceable to theoretical and experimental uncer-
tainties in the release profile pressure correction, as discussed
previously in Sec. IV B 2.

The impedance-match analysis of the last experiment,
Z946, appears to be an outlier. Compared to the other experi-
ments the analysis result deviates by 0.7% in u2 and 2.3% in
42 from the analysis with the 3700 EOS. Since the Hugoniot
uncertainty plays no role here, this discrepancy must origi-
nate from a difference between the release profile predicted
by 3700 compared with that predicted by our model-
averaged correction. The 2.3% discrepancy is well within our
estimated 4% uncertainty, thus there is no reason to favor
one result over the other. No release profile data is currently
available to test the models at these conditions.

The random uncertainty for individual shots is about
10%, roughly 2.5 times larger than the systematic error. The
random uncertainties can be reduced by averaging, which
was done by Knudson et al. for several of their measurement
points. It is interesting to note that the measurement uncer-
tainty in these experiments is dominated by the measurement
of the flyer-plate velocity: The #u2 /#- contribution over-
whelms the #u2 /#. contribution by a factor of 7–25.

D. High-pressure EOS of deuterium, incident shock
method

U1-type impedance-match EOS measurements on solid
deuterium driven by a convergent explosive system have
been reported by Belov et al.16 and Boriskov et al.17 More
recently similar measurements on liquid deuterium have
been reported by Boriskov et al.;18 however, in the latter
report the authors listed only the analyzed U2−u2 values and
did not give the underlying U1 data, thus it is not possible to
assess the systematics of the latter study. In Table VII we
show an analysis of Belov et al.16 and Boriskov et al.17 for
the purpose of comparing the systematic errors with the
u1-type measurements of Knudson et al..

The compression results produced by our analysis in
Table VII are approximately 3.3% higher than found in Ref.
16 and 1.0% higher than in Ref. 17; thus our impedance-
match model appears to be slightly softer than that used by

TABLE VI. Analysis of a subset of eight experiments from the impedance-match data of Knudson et al. !Ref. 15". Data are from Table I in Ref. 15. The
column arrangement is the same as given in Table IV. The principal Hugoniot of the Al standard was adjusted slightly for cryogenic conditions !higher density
and a small correction to the slope".

Expt.

!10 !20 U1!$U1" U2!$U2"
#u2

#-

#u2

#.

#u2

#+

#u2

#,

u2!ran,sys"
!km/s"

P2!ran,sys"
!GPa" 42!ran,sys"!g cm−3" !km/s" !km/s/10−3"

Z904N 2.74 0.167 5.27!13" 13.50!24" 250 −17 5 128 9.69!25,13" 21.9!0.7,0.3" 3.55!29,12"
Z590 2.74 0.167 6.38!29" 15.26!28" 553 −22 6 145 11.69!55,14" 29.8!15,0.4" 4.27!72,17"
Z792S 2.74 0.167 7.42!15" 17.91!39" 287 −33 8 186 13.46!29,19" 40.3!1.2,0.6" 4.03!39,17"
Z711 2.74 0.167 9.98!25" 23.23!19" 474 −18 7 208 17.80!47,21" 69.1!1.9,0.8" 4.28!40,16"
Z894 2.74 0.167 10.35!16" 24.10!22" 303 −21 7 215 18.42!30,21" 74.1!1.4,0.9" 4.24!27,16"
Z1111N 2.74 0.167 10.80!17" 24.94!44" 316 −43 7 224 19.18!32,22" 79.9!1.8,0.9" 4.33!37,17"
Z1110N 2.74 0.167 11.37!17" 26.11!47" 318 −46 7 235 20.14!32,24" 87.8!2.0,1.0" 4.37!38,17"
Z946 2.74 0.167 12.12!49" 28.00!57" 927 −56 8 249 21.38!93,25" 100.0!4.7,1.2" 4.23!67,16"
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those authors. However, these discrepancies are within the
estimated range of systematic uncertainty, which is )4.3%
for the conditions of those experiments. One may assume
that a similar level of 4%–5% systematic uncertainty applies
to the analysis in.18

For the experiments listed in Table VII the release profile
uncertainty contribution !#u2 /#," is larger than the Hugoniot
uncertainty contribution !#u2 /#+", and in comparison with
Table VI the systematic uncertainties for the U1-type mea-
surements are only somewhat larger !about 20%" than for the
u1-type measurements. This is because both methods are
equally affected by the dominant release profile uncertainty.

VI. DISCUSSION

We have presented an accurate method of performing
ultrahigh-pressure impedance-match analysis for two com-
mon types of impedance-match experiments. The
impedance-match EOS for the Al shock-wave standard, in-
cluding uncertainties, is described completely by Tables II
and III in conjunction with Eqs. !14"–!19". The Al fit is
somewhat softer than existing tabular models and will pro-
duce softer results for most impedance-match data. The
analysis method amounts to finding a root of a polynomial of
quadratic or cubic order and is summarized in Eqs.
!20"–!27". The systematic uncertainties estimated by the
analysis method are directly traceable to the uncertainties in
the fit to the absolute Hugoniot data and to the standard
deviation of the pressure corrections predicted by an en-
semble of theoretical models. As the data for the Al principal
Hugoniot and improved theoretical models become avail-
able, the information can be incorporated easily into the ana-
lytical forms developed here, in order to improve the analy-
sis of current and future experiments.

A potential weakness of the current analysis is the fact
that the theoretical estimates for the pressure corrections are
largely unconstrained by the data for both reshock and re-
lease states at high pressures !#1 TPa"; the pressure correc-
tions under these conditions are therefore almost entirely
model dependent. Since the pressure corrections are increas-
ing in the limit of extreme pressures, it seems important to
produce experimental data that test the theoretical predic-
tions for Al !and other standards" under strong reshock and
release at pressures #1 TPa.
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APPENDIX

1. Linear and quadratic fittings to the principal
Hugoniot

The fits used in this study are all derived using least-
squares fitting of a primary data set over an orthogonal poly-
nomial basis. The form of the fit used is

U = a0X0 + a1X1 + a2X2, !A1"

where the basis is defined by a constant term X0=1, a first-
order polynomial X1= !u−(", and a quadratic polynomial
X2= !u−)1"!u−)2". The coefficients of the fit, ai, are deter-
mined from a weighted 02 minimization of the polynomial
form above relative to the measured data set. The data set is
comprised of measurement pairs !ui±$ui ,Ui±$Ui", where
$ui and $Ui are the individual measurement errors of ui and
Ui, respectively. For fitting the ui are regarded as indepen-
dent, and the Ui are dependent with standard deviation &i

2

=$Ui
2+1.262$ui

2 assigned to each datum; the $ui contribution
to &i is weighted by the 1.262 factor to account approxi-
mately for the average slope !s/1.26 for Al" along the prin-
cipal Hugoniot. The weight assigned to each datum is wi
=&i

−2.
The basis used for the fit requires the additional param-

eters (, )1, and )2. While these parameters depend on the
data set, their dependence is only on the independent vari-
ables, ui, and not on the measured variables, Ui. Errors are
not assigned to (, )1, and )2, and they are calculated and
maintained to a high precision. The orthogonal basis is de-
termined by the expressions defined below, which were de-
rived following a procedure outlined by Bevington.47 Ini-
tially, we compute several weighted sums,

W = +
i=1

N

wi, 'u = +
i=1

N

wiui, 'u2 = +
i=1

N

wiui
2, !A2"

'u3 = +
i=1

N

wiui
3,

where the summations are made over N data points. These
terms are combined to define the parameters of the orthogo-
nal polynomial basis up to second order,

TABLE VII. Analysis of U1-type impedance-match data for D2 from Belov et al. !Ref. 16" and Boriskov et al. !Ref. 17".

Expt.

!10 !20 U1!$U1" U2!$U2"
#u2

#-

#u2

#.

#u2

#+

#u2

#,

u2!ran,sys"
!km/s"

P2!ran,sys"
!GPa" 42!ran,sys"!g cm−3" !km/s" !km/s/10−3"

Ref. 16 2.74 0.199 16.39!10" 20.30!20" 157 −19 −127 197 14.90!16,23" 60.20!82,95" 3.76!16,16"
Ref. 17 2.74 0.199 21.20!30" 28.20!60" 476 −64 −158 243 21.70!48,29" 121.8!3.5,1.6" 4.34!47,19"

113529-16 Celliers et al. J. Appl. Phys. 98, 113529 "2005!

Downloaded 01 Feb 2008 to 128.115.27.10. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



( = 'u/W ,

)1 =
'u'u2 − W'u3 − 0!'u'u2 − W'u3"2 + 4!'u

2 − W'u2"!− 'u2
2 + 'u'u3"

2!'u
2 − W'u2" ,

)2 =
'u'u2 − W'u3 + 0!'u'u2 − W'u3"2 + 4!'u

2 − W'u2"!− 'u2
2 + 'u'u3"

2!'u
2 − W'u2" .

Using the above definitions it can be shown that the basis has
the property

+
i=1

N

wiXj!ui"Xk!ui" = 0 for j $ k , !A3"

which is the orthogonality condition.
The weighted least-squares fit of the data !02 minimiza-

tion" is given by solving a system of n+1 equations for an
n-order fit for the coefficients aj. The equations can be rep-
resented in matrix form as

zk = aj5 jk for k = 0, . . . ,n , !A4"

where

zk = +
i=1

N

wiUiXk!ui" and 5 jk = +
i=1

N

wiXj!ui"Xk!ui" . !A5"

The matrix ! is diagonal !i.e., 5 jk=0 for j$k" because of the
orthogonality condition of Eq. !A3". The inverse, "=!−1, is
needed to solve the matrix equations and to evaluate the
errors in the coefficients; " is also diagonal. The standard
deviations for the uncertainties in the fit coefficients are
given by

&aj

2 = +
i=1

N *&i
2% #aj

#Ui
&2, . !A6"

However, from the fact that the matrices are diagonal,

% #aj

#Ui
& = +

j=0

n

, jkwiXk!ui" = , j jwiXj!ui" , !A7"

which leads to the following expression for the uncertainties:

&aj

2 = , j j
2 +

i=1

N

wiXj!ui"2. !A8"

Because the matrices have zero-valued off-diagonal ele-
ments, the covariance among the fitting coefficients vanishes,
and the error contributions can be propagated using simple
quadrature combinations of the individual contributions as
indicated in Eq. !15".

2. Determining the off-Hugoniot pressure correction

The off-Hugoniot corrections are determined entirely
from theoretical EOS models for the reference standard as
follows. For each model m we begin by computing the prin-

cipal Hugoniot predicted by the model, PHm!u", and then
choose a series of states j, parameterized by particle velocity
uj along the principal Hugoniot !giving model-dependent
Ujm". Starting from these states we compute the second
shock Hugoniot Prskjm

!u" and release profiles Preljm
!u", cen-

tered on the Hugoniot state j. Finally, from each of these
calculated profiles, we subtract the approximate profile rep-
resented by the mirror-reflected Hugoniot PMjm

!u"
= PHm

!2ujm−u", centered at the state j,

PCjm
!u" = 4Prskjm

!u" − PHm
!2ujm − u" , u " ujm

Preljm
!u" − PHm

!2ujm − u" , u6 jm.
5 !A9"

Therefore, the PCjm
!u" represent a pressure correction that

must be added to the mirror-reflected Hugoniot of state j in
order to retrieve the exact reshock and release profiles for
that model. By compiling a series of such correction curves
over a range of states j, one may generate the correction over
a wide range of parameter space by interpolation methods.

This construction is designed to normalize a given theo-
retical EOS model against a measured Hugoniot, yet retain
the information in the model pertaining specifically to the
off-Hugoniot states. That is, starting from a measured Hugo-
niot PHfit

!u", one can define a PMjfit
!u" for state j and com-

bine it with the correction PCjm
!u" for state j of model m, in

order to generate an impedance-match EOS that incorporates
accurately both the measured principal Hugoniot and the
theoretical off-Hugoniot physics represented in model m. It
turns out that the theoretical picture is uncertain because dif-
ferent models produce different estimates for PCj

!u"; there-
fore, we estimate a model-dependent uncertainty &PCj

!u"
based on the variation among models. The discussion below
presents a compact polynomial construction for representing
this model-dependent information including the estimate of
the model-dependent uncertainty. The procedures outlined in
Sec. III C provide the means for incorporating &PCj

!u" into
the impedance-match analysis.

To generate the polynomial fits we define a normalized
pressure correction,

pnjm
!q" = PCjm

#!q + 1"uj$/PHm
!uj" . !A10"

Here, PCjm
!u" is scaled by the Hugoniot pressure of the inci-

dent state and mapped onto a normalized velocity coordinate,
q=u /uj −1, with origin q=0 centered on the incident shock
state uj. The goal of the fit is to approximate pnjm

!q" accu-
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rately #)1% of PHm
!uj"$ with a small number of coefficients.

In general the normalized reshock pressure correction
Prskjm

!q" can be fitted to this accuracy by a quadratic poly-
nomial in q and the release branch,Preljm

!q" by a cubic poly-
nomial in q. We choose the Chebyshev polynomials to con-
struct the fits to the pnjm

because of their orthogonality and
near-optimal minimization of errors over a finite fitting do-
main.

Practical limits for the appropriate ranges of q depend on
the limiting impedances of possible samples. Release of Al
into cryogenic liquid H2 produces values of q ranging from
0.84 to 1.0 for incident shocks in Al from 4 to 0.1 TPa
!0.66–0.96 for the case of liquid D2". At the opposite end of
the impedance spectrum estimated reshock conditions in Al
for a selection of typical high-impedance samples !e.g., Au
and W" show that −0.6"q in all cases. Intermediate cases
are 0.25"q"0.42 for water and −0.32"q"−0.25 for Fe.
Therefore, for the purpose of constructing fits to the pressure
correction curves, it is sufficient to fit pnjm

!q" to the interval
−2/3"q"0 on the reshock branch and to 0"q"1 on the
release branch.

The Chebyshev approximation is defined to fit a function
over a normalized interval, −1"y"1; therefore, we define
additional mappings according to the two branches,

qs!y" = !y − 1"/3, !A11"

qr!y" = !y + 1"/2, !A12"

which maps the interval −1"y"1 to −2/3"qs"0 and to
0"qr"1 for the reshock and release branches, respectively.
The Chebyshev coefficient for model m, shock state j,
branch t, and order i is then defined by computing the sum,48

bjmti =
2
L+

l=1

L

pnjm
%qt4cos*7!l − 1/2"

L
,5&

/cos*7!l − 1/2"i
L

, , !A13"

where L is typically a large number !50 in our case, in order
to sample the function adequately" and t is either s or r for
the shock and release branch mappings, respectively. A sepa-
rate fit is applied to each case j, and the resulting set of
coefficients is tabulated to represent the pressure corrections
for a given EOS model over a wide range of states. For the
reshock branch we compute coefficients up to i=2 and for
release branch up to i=3.

Using these definitions the approximation to pnjm
is

given by48

pnjm
!q"

= -− bjms0

2
+ +

i=0

2

bjmsiTi!3q + 1" for − 2/3 " q * 0

− bjmr0

2
+ +

i=0

3

bjmriTi!2q − 1" for 0 " q * 1. .
!A14"

Averaging over a set of M models is achieved by averaging
the coefficients,

FIG. 11. !Color online" Open circles show the model-averaged reshock
branch pressure correction coefficients !a" bs1 and !b" bs2; the corresponding
error bars show the magnitudes of !a" &bs1

and !b" &bs2
. Also shown are the

coefficient values determined from the underlying models: SESAME 3715
!solid, red", SESAME 3719 !dash, green", SESAME 3713 !dotted, blue", QEOS
!chain-dot, magenta", and 3700 !chain-dot-dot, black" !Ref. 40".

FIG. 12. !Color online" Same as for Fig. 11 for the coefficients of the
release branch of the pressure correction.
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6bjti7 =
1
M +

m=1

M

bjmti. !A15"

Uncertainties &bjti
are determined from the corresponding

standard deviations:

&bjti
= * 1

M − 1 +
m=1

M

!bjmti − 6bjti7"2,1/2

. !A16"

For a particular experiment characterized by incident shock
velocity u1, we interpolate !linear interpolation is adequate"
into the set of 6bjti7 and & jti that are tabulated against the
particle velocities uj; the interpolated values are referred to
as bti!u1" and &bti

!u1" in Eqs. !17" and !18", respectively, with
t denoting the branch s or r depending on q. The tabulation
for Al is given in Table III.

The coefficients br0 and bs0 are not listed in Table III;
instead, they are discarded and replaced with an additional
constraint to enforce the condition pn1

!q"→0 as q→0. This
is equivalent to zeroing the constant term in a Taylor series
representation of pn1

!q" expanded about q=0 #as in Eq. !33"$.
The exact corrections pnjm!q" of Eq. !A10" have this property
while the approximate fits do not. Therefore, the fits are
modified by redefining bs0 and br0 to satisfy this constraint,

bs0!u1" = − 2#bs1!u1" + bs2!u1"$ , !A17"

br0!u1" = 2#br1!u1" − br2!u1" + br3!u1"$ . !A18"

These constraints are included implicitly in Eqs. !17" and
!18" #compare with Eq. !A14"$.

The two figures, Figs. 11 and 12, show the values of the
reshock and release coefficients, respectively, as fitted to the
five models used to construct the averaged correction. Also
plotted are the model-averaged values 6bsi7 and 6bri7 with
error bars that represent the variation among the models, &bsi
and &bri

, respectively. These plots reveal that the magnitudes
of all the correction coefficients are effectively zero in the

limit of weak shocks u*4 km/s, indicating that the mirror-
reflection approximation is very accurate for weak shocks;
this fact is well known and consistent with, for example, the
velocity doubling rule to estimate the particle velocity in a
weak shock from a measurement of the free-surface velocity.
On the other hand all of the correction coefficients increase
in magnitude for increasing shock strength. In the strong
shock domain !u#6 km/s" the mirror-reflection approxima-
tion will produce increasingly inaccurate results, especially
for reshock-type experiments.

In Fig. 13 we compare the values of 6bs07 and 6br07 as
determined from the unconstrained Chebyshev fit along with
the corresponding values determined from the constraint
equations #!A17" and !A18"$. It is evident that the values
determined from the constraints are very close to those de-
termined from the unconstrained fits, well within the model-
to-model uncertainties; therefore, the imposition of the con-
straints does not degrade the character or quality of the fit.
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